Abstract

Tagging expressed proteins with the green fluorescent protein (GFP) from Aequorea victoria[1] is a highly specific and sensitive technique for studying the intracellular dynamics of proteins and organelles. We have developed, as a probe, a fusion protein of the carboxyl terminus of dynein and GFP (dynein–GFP), which fluorescently labels the astral microtubules of the budding yeast Saccharomyces cerevisiae. This paper describes the modifications to our multimode microscope imaging system [2,3], the acquisition of three-dimensional (3-D) data sets and the computer processing methods we have developed to obtain time-lapse recordings of fluorescent astral microtubule dynamics and nuclear movements over the complete duration of the 90–120 minute yeast cell cycle. This required low excitation light intensity to prevent GFP photobleaching and phototoxicity, efficient light collection by the microscope optics, a cooled charge-coupled device (CCD) camera with high quantum efficiency, and image reconstruction from serial optical sections through the 6 μm-wide yeast cell to see most or all of the astral molecules. Methods are also described for combining fluorescent images of the microtubules labeled with dynein–GFP with high resolution differential interference contrast (DIC) images of nuclear and cellular morphology [4], and fluorescent images of the chromosomes stained with 4,6-diamidino-2-phenylindole (DAPI) [5].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call