Abstract

SUMMARY The ability to detect aligned fractures using seismic anisotropy provides a valuable tool for exploiting hydrocarbon reservoirs better. Perhaps the most direct way of identifying anisotropy is by observing shear wave splitting. However, the interaction of shear waves with subsurface structure is often complicated. Although fractures in hydrocarbon reservoirs are usually subvertical, shear waves recorded on downhole receivers from microseismic events in or near the reservoir are not likely to have travelled vertically. As such, interpreting splitting measurements made on such waves is a non-trivial problem. Here we develop an approach to model the effects of subsurface structure on non-vertically propagating shear waves. Rock physics theory is used to model the effects of sedimentary fabrics as well as fractures, allowing us to use shear wave splitting measurements to invert for aligned fractures. We use synthetic examples to demonstrate how it is possible to assess in advance how well splitting measurements will image structures, and how this is highly dependent on the available range of ray coverage. Finally, we demonstrate the inversion technique on a passive seismic data set collected during hydraulic fracture stimulation. Despite an unfavourable source–receiver geometry, the strike of an aligned fracture set is accurately identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call