Abstract

PurposeTo evaluate the diagnostic performance of dual-energy (DE) computed tomography (CT) after thoracic endovascular aortic repair (TEVAR) of type B dissection, and to investigate the value of late delayed (LD) acquisition in endoleak detection and false lumen patency assessment. Materials and MethodsTwenty-four patients with TEVAR for type B dissection underwent 53 tripe-phase CT examinations. Single-source unenhanced acquisition was followed by single-source arterial-phase and DE LD phase (300-s delay) imaging. Virtual noncontrast images were generated from DE acquisition. Two blinded radiologists retrospectively evaluated the cases in three reading sessions: session A (triphasic protocol), session B (virtual noncontrast and arterial phase), and session C (virtual noncontrast and arterial and LD phases). Endoleak detection accuracy during sessions B and C compared with session A (reference standard) was investigated. False lumen patency was assessed. Effective radiation dose was calculated. ResultsSession A revealed 37 endoleaks in 30 of 53 studies (56.6%). Session B revealed 31 of the 37 endoleaks, with one false-positive case, 83.8% sensitivity, 95.8% specificity, 79.3% negative predictive value, and 96.9% positive predictive value. Session C correctly depicted all 37 endoleaks, with one false-positive case, 100% sensitivity, 95.8% specificity, 100% negative predictive value, and 97.4% positive predictive value. Underestimation of false lumen patency was found in session B (P = .013). Virtual noncontrast imaging resulted in 17% radiation exposure reduction. ConclusionsVirtual noncontrast imaging can replace standard unenhanced images in follow-up after TEVAR of type B dissection, thus reducing radiation dose. Delayed-phase imaging is valuable in low-flow endoleaks detection and false lumen patency assessment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.