Abstract

Chronic Lymphocytic Leukaemia (CLL), the most common leukaemia in the Western world, has a characteristic phenotype and prognosis largely defined by the presence of cytogenetic aberrations. The gold standard for detecting these cytogenetic abnormalities is interphase fluorescence in situ hybridisation (FISH) performed on cell smears or tissue sections on glass slides. Fluorescently labelled DNA probes bind to specific chromosomal regions and the signal detected by fluorescent microscopy. Generally only 200 cells are assessed and the limit of sensitivity is 3% positive cells. Here we report the development and use of imaging flow cytometry to assess chromosomes by FISH in phenotyped CLL cells in suspension. Thousands of CLL cells, identified by their phenotype, are assessed for specific FISH probe signals using an automated, high throughput imaging flow cytometer. The "extended depth of field" capability of the imaging flow cytometer enables FISH probe signals ("spots") to be resolved and localised within the (stained) nucleus of the immunophenotyped cells. We report the development of the automated "immuno-flowFISH" on normal blood using the Amnis ImageStreamX mark II platform and illustrate the clinical application of the method for the assessment of chromosome 12 in CLL. It is a powerful new method which has potential to be applied at diagnosis for disease stratification, and following treatment to assess residual disease. These applications will assist clinicians in optimising therapeutic decision making and thereby improve patient outcome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call