Abstract

Three types of chromosomal translocations, t(4;14)(p16;q32), t(14;16)(q32;q23), and t(11;14)(q13;q32), are associated with prognosis and the decision making of therapeutic strategy for multiple myeloma (MM). In this study, we developed a new diagnostic modality of the multiplex FISH in immunophenotyped cells in suspension (Immunophenotyped-Suspension-Multiplex (ISM)-FISH). For the ISM-FISH, we first subject cells in suspension to the immunostaining by anti-CD138 antibody and, then, to the hybridization with four different FISH probes for genes of IGH, FGFR3, MAF, and CCND1 tagged by different fluorescence in suspension. Then, cells are analyzed by the imaging flow cytometry MI-1000 combined with the FISH spot counting tool. By this system of the ISM-FISH, we can simultaneously examine the three chromosomal translocations, i.e, t(4;14), t(14;16), and t(11;14), in CD138-positive tumor cells in more than 2.5 × 104 nucleated cells with the sensitivity at least up to 1%, possibly up to 0.1%. The experiments on bone marrow nucleated cells (BMNCs) from 70 patients with MM or monoclonal gammopathy of undetermined significance demonstrated the promising qualitative diagnostic ability in detecting t(11;14), t(4;14), and t(14;16) of our ISM-FISH, which was more sensitive compared with standard double-color (DC) FISH examining 200 interphase cells with its best sensitivity up to 1.0%. Moreover, the ISM-FISH showed a positive concordance of 96.6% and negative concordance of 98.8% with standard DC-FISH examining 1000 interphase cells. In conclusion, the ISM-FISH is a rapid and reliable diagnostic tool for the simultaneous examination of three critically important IGH translocations, which may promote risk-adapted individualized therapy in MM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call