Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is a lethal, heterogeneous disease with few therapeutic strategies that significantly prolong survival. Innovative therapies for mCRPC are needed; however, the development of new therapies relies on accurate imaging to assess metastasis and monitor response. Standard imaging modalities for prostate cancer require improvement and there remains a need for selective and sensitive imaging probes that can be widely used in patients with mCRPC. We evaluated the transmembrane protease fibroblast activation protein alpha (FAP) as a targetable cell surface antigen for mCRPC. Genomic and IHC analyses were performed to investigate FAP expression in prostate cancer. Our FAP-targeted antibody imaging probe, [89Zr]Zr-B12 IgG, was evaluated by PET/CT imaging in preclinical prostate cancer models. Analysis of patient data documented FAP overexpression in metastatic disease across tumor subtypes. PET imaging with [89Zr]Zr-B12 IgG demonstrated high tumor uptake and long-term retention of the probe in the preclinical models examined. FAP-positive stroma tumor uptake of [89Zr]Zr-B12 IgG was 5-fold higher than the isotype control with mean %ID/cc of 34.13 ± 1.99 versus 6.12 ± 2.03 (n = 3/group; P = 0.0006) at 72 hours. Ex vivo biodistribution corroborated these results documenting rapid blood clearance by 24 hours and high tumor uptake of [89Zr]Zr-B12 IgG by 72 hours. Our study reveals FAP as a target for imaging the tumor microenvironment of prostate cancer. Validation of [89Zr]Zr-B12 IgG as a selective imaging probe for FAP-expressing tumors presents a new approach for noninvasive PET/CT imaging of mCRPC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Clinical cancer research : an official journal of the American Association for Cancer Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.