Abstract
Electrostatic confinement of charge carriers in graphene is governed by Klein tunneling, a relativistic quantum process in which particle-hole transmutation leads to unusual anisotropic transmission at pn junction boundaries. Reflection and transmission at these novel potential barriers should affect the quantum interference of electronic wavefunctions near these boundaries. Here we report the use of scanning tunneling microscopy (STM) to map the electronic structure of Dirac fermions confined by circular graphene pn junctions. These effective quantum dots were fabricated using a new technique involving local manipulation of defect charge within the insulating substrate beneath a graphene monolayer. Inside such graphene quantum dots we observe energy levels corresponding to quasi-bound states and we spatially visualize the quantum interference patterns of confined electrons. Dirac fermions outside these quantum dots exhibit Friedel oscillation-like behavior. Bolstered with a theoretical model describing relativistic particles in a harmonic oscillator potential, our findings yield new insight into the spatial behavior of electrostatically confined Dirac fermions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.