Abstract

There is an increasing effort for the development of transmission electron microscopes operating at accelerating voltages of less that 100 kV, down to 20 kV. This work aims to clarify if the technology of conventional indirect scintillator-CCD cameras is suitable to record images formed with electrons of such low energy and how its performance compare to that of novel direct silicon imaging detectors. The performance of these imaging detectors is discussed in terms of modulation transfer function and detective quantum efficiency. It is demonstrated that whilst the performance of conventional scintillator-CCDs improves as the electron energy is dropped, it then peaks at 70 keV and then drops again. Optimum imaging performance at even lower energies is expected for the novel directly exposed detectors, which are capable of near 100% detective quantum efficiency at very low electron energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.