Abstract
AbstractDielectric breakdown (DB) controls the failure, and increasingly the function, of microelectronic devices. Standard imaging techniques, which generate contrast based on physical structure, struggle to visualize this electronic process. Here in situ scanning transmission electron microscopy (STEM) electron beam‐induced current (EBIC) imaging of DB in Pt/HfO2/Ti valence change memory devices is reported. STEM EBIC imaging directly visualizes the electronic signatures of DB, namely local changes in the conductivity and in the electric field, with high spatial resolution and good contrast. DB is observed to proceed through two distinct structures arranged in series: a volatile, “soft” filament created by electron injection; and a non‐volatile, “hard” filament created by oxygen‐vacancy aggregation. This picture makes a physical distinction between “soft” and “hard” DB, while at the same time accommodating “progressive” DB, where the relative lengths of the hard and soft filaments can change on a continuum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.