Abstract

The scattering of light after passing through a complex medium poses challenges in many fields. Any point in the collected speckle will contain information from the entire target plane because of the randomness of scattering. The detailed information of complex targets is submerged in the aliased signal caused by random scattering, and the aliased signal causes the quality of the recovered target to be degraded. In this paper, a new neural network named Adaptive Encoding Scattering Imaging ConvNet (AESINet) is constructed by analyzing the physical prior of speckle image redundancy to recover complex targets hidden behind the opaque medium. AESINet reduces the redundancy of speckle through adaptive encoding which effectively improves the separability of data; the encoded speckle makes it easier for the network to extract features, and helps restore the detailed information of the target. The necessity for adaptive encoding is analyzed, and the ability of this method to reconstruct complex targets is tested. The peak signal-to-noise ratio (PSNR) of the reconstructed target after adaptive encoding can be improved by 1.8 dB. This paper provides an effective reference for neural networks combined with other physical priors in scattering processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call