Abstract

IntroductionOncolytic viruses show promise for treating cancer. However, to assess therapy and potential toxicity, a noninvasive imaging modality is needed. This study aims to determine the in vivo biodistribution, and imaging and timing characteristics of a vaccinia virus, GLV-1h153, encoding the human sodium iodide symporter (hNIS.MethodsGLV-1h153 was modified from GLV-1h68 to encode the hNIS gene. Timing of cellular uptake of radioiodide 131I in human pancreatic carcinoma cells PANC-1 was assessed using radiouptake assays. Viral biodistribution was determined in nude mice bearing PANC-1 xenografts, and infection in tumors confirmed histologically and optically via Green Fluorescent Protein (GFP) and bioluminescence. Timing characteristics of enhanced radiouptake in xenografts were assessed via 124I-positron emission tomography (PET). Detection of systemic administration of virus was investigated with both 124I-PET and 99m-technecium gamma-scintigraphy.ResultsGLV-1h153 successfully facilitated time-dependent intracellular uptake of 131I in PANC-1 cells with a maximum uptake at 24 hours postinfection (P<0.05). In vivo, biodistribution profiles revealed persistence of virus in tumors 5 weeks postinjection at 109 plaque-forming unit (PFU)/gm tissue, with the virus mainly cleared from all other major organs. Tumor infection by GLV-1h153 was confirmed via optical imaging and histology. GLV-1h153 facilitated imaging virus replication in tumors via PET even at 8 hours post radiotracer injection, with a mean %ID/gm of 3.82±0.46 (P<0.05) 2 days after intratumoral administration of virus, confirmed via tissue radiouptake assays. One week post systemic administration, GLV-1h153-infected tumors were detected via 124I-PET and 99m-technecium-scintigraphy.ConclusionGLV-1h153 is a promising oncolytic agent against pancreatic cancer with a promising biosafety profile. GLV-1h153 facilitated time-dependent hNIS-specific radiouptake in pancreatic cancer cells, facilitating detection by PET with both intratumoral and systemic administration. Therefore, GLV-1h153 is a promising candidate for the noninvasive imaging of virotherapy and warrants further study into longterm monitoring of virotherapy and potential radiocombination therapies with this treatment and imaging modality.

Highlights

  • Oncolytic viruses show promise for treating cancer

  • Vaccinia’s large 192-kb genome [2] enables a large amount of foreign DNA to be incorporated without significantly reducing the replication efficiency of the virus, which has been shown to be the case with some adenoviruses [3]

  • We have previously reported on the construction and generation of a novel attenuated replication-competent vaccinia virus (VACV), GLV-1h153, a derivative of parental virus GLV-1h68 engineered to carry the human sodium iodide symporter [16]. hNIS, an intrinsic plasma membrane protein, facilitates transport of several carrier-free radiotracers such as radioiodine and technecium-pertechnetate (99mTcO4) [17]

Read more

Summary

Introduction

Oncolytic viruses show promise for treating cancer. to assess therapy and potential toxicity, a noninvasive imaging modality is needed. Oncolytic viral therapies have shown such promise in preclinical trials as a novel cancer treatment modality, that several phase I and II trials are already underway [1]. Vaccinia’s large 192-kb genome [2] enables a large amount of foreign DNA to be incorporated without significantly reducing the replication efficiency of the virus, which has been shown to be the case with some adenoviruses [3]. It has fast and efficient replication, and cytoplasmic replication of the virus lessens the chance of recombination or integration of viral DNA into cells [3,4]. Furthering its safety profile, vaccinia immunoglobulin and antiviral drugs are available if needed [15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.