Abstract

The cellular response to environmental cues is complex, involving both structural and functional changes within the cell. Our understanding of this response is facilitated by microscopy techniques, but has been limited by our ability to image cell structure and function deep in highly-scattering tissues or 3D constructs. A novel multimodal microscopy technique that combines coherent and incoherent imaging for simultaneous visualization of structural and functional properties of cells and engineered tissues is demonstrated. This microscopic technique allows for the simultaneous acquisition of optical coherence microscopy and multiphoton microscopy data with particular emphasis for applications in cell biology and tissue engineering. The capability of this technique is shown using representative 3D cell and tissue engineering cultures consisting of primary fibroblasts from transgenic green fluorescent protein (GFP) mice and GFP-vinculin transfected fibroblasts. Imaging is performed following static and dynamic mechanically-stimulating culture conditions. The microscopy technique presented here reveals unique complementary data on the structure and function of cells and their adhesions and interactions with the surrounding microenvironment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.