Abstract
The purpose of this study was to develop a scanning electrochemical microscopy (SECM) and scanning electrogenerated chemiluminescence (SECL) setup to visualize the localized enzymatic activity using glucose oxidase as a model. Combination of SECM and electrogenerated chemiluminescence (ECL) was made possible by integrating a photomultiplier tube (PMT) within a SECM setup which is mounted on top of an inverted microscope. An enzyme-polymer spot formed on a glass slide and placed on top of the entrance window of the PMT was used as a model sample to evaluate the potential of the combined SECM/ECL setup. Hydrogen peroxide, which was locally generated by the glucose oxidase (GOx)-catalyzed reaction, reacted with oxidized luminol which was simultaneously electrochemically generated at the positioned SECM electrode tip. By using the phase-sensitive lock-in amplifier, the potential applied to the SECM tip was sinusoidally swept to invoke an associated oscillation of the ECL. Thus, sensitivity of SECL could be substantially enhanced. Images of the local immobilized enzyme activity obtained both by ECL and generator/collector (GC) mode of SECM were compared to elucidate the pathway in which the SECM and SECL signals are generated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.