Abstract

We present an optofluidic chip with integrated polymer interferometers for measuring both the microfluidic air pressure and flow rate. The chip contains a microfluidic circuit and optical cavities on a polymer which was defined by soft lithography. The pressure can be read out by imaging the interference patterns of the cavities. The air flow rate was then calculated from the differential pressure across a microfluidic Venturi circuit. Air flow rate measurement in the range of 0-2mg/second was demonstrated. This device provides a simple and versatile way for in situ measuring the microscale air pressure and flow on chip.

Highlights

  • In the past years optofluidic has received substantial attention in both microfluidics and optics

  • Different from the MEMS (Microelectronic and Microelectromechanical Systems) based pressure or flow sensors which require sophisticated fabrication process with silicon [16,17], this optofluidic sensor was defined on a polymer chip with soft lithography and the measurement was done by imaging the interference pattern from the chip

  • In conclusion, we have demonstrated an optofluidic chip for simultaneously measuring the microfluidic air pressure and the flow rate through imaging

Read more

Summary

Introduction

In the past years optofluidic has received substantial attention in both microfluidics and optics. Different from the MEMS (Microelectronic and Microelectromechanical Systems) based pressure or flow sensors which require sophisticated fabrication process with silicon [16,17], this optofluidic sensor was defined on a polymer chip with soft lithography and the measurement was done by imaging the interference pattern from the chip. This sensor can be fabricated with low cost. Received 27 May 2010; revised 8 Jul 2010; accepted 13 Jul 2010; published 22 Jul 2010 2 August 2010 / Vol 18, No 16 / OPTICS EXPRESS 16563

Fabrication
Experiment and result
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.