Abstract

Optical nanoantennas tailor the transmission and reception of optical signals. Owing to their capacity to control the direction and angular distribution of optical radiation over a broad spectral range, nanoantennas are promising components for optical communication in nanocircuits. Here we measure wireless optical power transfer between plasmonic nanoantennas in the far-field and demonstrate changeable signal routing to different nanoscopic receivers via beamsteering. We image the radiation pattern of single-optical nanoantennas using a photoluminescence technique, which allows mapping of the unperturbed intensity distribution around plasmonic structures. We quantify the distance dependence of the power transmission between transmitter and receiver by deterministically positioning nanoscopic fluorescent receivers around the transmitting nanoantenna. By adjusting the wavefront of the optical field incident on the transmitter, we achieve directional control of the transmitted radiation over a broad range of 29°. This enables wireless power transfer from one transmitter to different receivers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call