Abstract

We have employed a two-photon photoelectron emission microscopy (2P-PEEM) to observe the photocarrier electron dynamics in an organic thin film of fullerene (C60) formed on a highly oriented pyrolytic graphite with a spatial resolution of ca. 135 nm. In this approach, photocarrier electrons in C60 single-layer islands generated by the first pump photon are detected by the second probe photon. These spectromicroscopic observations conducted over a 100 × 100 nm2 region of C60 islands consistently reproduced the macroscopic two-photon photoemission spectrum of fully covered C60 monolayer film, where the energy of photocarrier electron in the islands was +0.9 eV relative to the Fermi level. Time-resolved 2P-PEEM revealed that the photocarrier electron decayed from the monolayered C60 islands into the substrate with a time constant of 470 ± 30 fs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.