Abstract

Optimized conditions for imaging and spectroscopic/elemental mapping of thin perfluorosulfonic acid (PFSA) ionomer layers in fuel cell electrodes by scanning transmission electron microscopy (STEM) have been investigated. The proper conditions were first identified using model systems of either Nafion ionomer-coated nanostructured thin film catalysts or thin films on nanoporous Si. These analysis conditions were then applied in a quantitative study of the ionomer through-layer loading for two differently-prepared electrode catalyst layers using electron energy loss (EELS) and energy dispersive X-ray spectroscopy (EDS) in the STEM. The electron-beam induced damage to the PFSA ionomer was quantified by following the fluorine mass loss with electron dose/exposure and was mitigated by several orders of magnitude using cryogenic specimen cooling and a higher incident electron voltage. Multivariate statistical analysis was applied to the analysis of both EELS and EDS spectrum images for data de-noising and unbiased separation of the independent components related to the catalyst, ionomer, and support distributions within the catalyst layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.