Abstract
AbstractThe Khorat Plateau from northeast Thailand, the upstream part of the Mun River flows through clastic sedimentary rocks. A massive amount of sand was transported. We aimed to understand the evolution of fluvial system and to discuss the advantages of two shallow geophysical methods for describing subsurface morphology of modern and paleo-channels. We applied Electrical Resistivity Tomography (ERT) and Ground Penetrating Radar (GPR) to characterize the lateral, vertical morphological and sedimentary structures of paleo-channels, floodplain and recent point bars. Both methods were interpreted together with on-sites boreholes to describe the physical properties of subsurface sediments. As a result, we concluded that four radar reflection patterns including reflection free, shingled, inclined and hummocky reflections were appropriated to apply as criteria to characterize lateral accretion, the meandering rivers with channel-filled sequence and floodplain were detected from ERT profiles. The changes in resistivity correspond well with differences in particle size and show relationship with ERT lithological classes. Clay, silt, sand, loam and bedrock were classified by the resistivity data. Geometry of paleo-channel embayment and lithological differences can be detected by ERT, whereas GPR provides detail subsurface facies for describing point bar sand deposit better than ERT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.