Abstract
Epitaxial two-dimensional (2D) nanostructures with regular patterns show great promise as templates for adsorbate confinement. Prospectively, employing 2D semiconductors with reduced density of states leads to a long excited-state lifetime that allows us to directly image the dynamics of the adsorbate. We show that epitaxial blue phosphorene (blueP) on Au(111) provides such a platform to trap water molecules in the periodic nanopores without formation of strong bonds. The trapped water aggregate is tentatively assigned to a hexamer based on our scanning tunneling microscopy studies and first-principles calculations. Real-space observation of conformational switching of the hexamer induced by inelastic electrons is achieved by using low-temperature scanning tunneling microscopy with molecular resolution. We found a localized interfacial charge rearrangement between the water hexamer and P atoms underneath that is responsible for the reversible desorption and adsorption of water molecules by changing the sample bias polarity from positive to negative, offering a promising strategy for engineering the electronic properties of blueP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.