Abstract

Structural biology relies on good-quality protein crystals in order for structure determination. Many factors affect the growth process of a protein crystal including the way it nucleates and the types of damage and contamination during its growth. Although the nucleation process and quality of a crystal is vital to structure determination, they are both under-studied areas of research. Our research begins to explore ways of measuring the quality of protein crystals, using TEM, thus overcoming the problems associated with viewing wet specimens in a vacuum. Our current understanding of nucleation is that it is a two-step mechanism involving the formation of nuclei from dense liquid clusters; however; it is still unclear whether nuclei first start as amorphous aggregates or as crystalline lattices. Potentially, electron diffraction may be capable of uncovering this process. Using TEM imaging and diffraction of lysozyme as a model protein crystal, we report the internal two-dimensional strain and the density of crystallites in a protein crystal, at a resolution never seen before. The TEM diffraction shows unique features of crystal mosaicity that can be directly correlated to TEM images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.