Abstract

With the continued development of non-invasive therapies for actinic keratosis such as PDT and immune therapies, the non-invasive diagnosis and monitoring become increasingly relevant. High-definition optical coherence tomography is a high-resolution imaging tool, with micrometre resolution in both transversal and axial directions, enable to visualize individual cells up to a depth of around 570 μm filling the imaging gap between conventional optical coherence tomography and reflectance confocal microscopy. We sought to determine the feasibility of detecting and grading of actinic keratosis by this technique using criteria defined for reflectance confocal microscopy compared to histology. In this pilot study, skin lesions of 17 patients with a histologically proven actinic keratosis were imaged by high-definition optical coherence tomography just before excision and images analysed qualitatively. The surrounding normal looking skin has been used as control group. In lesional skin, dyskeratotic and atypical keratinocytes could be noticed with this new technique. An atypical honeycomb pattern in variable degree or a disarranged epidermal pattern could be observed. A good correlation between the dimension of atypia and/or disarrangement of the spinous-granular layer on en face images and the histopathological grading could be demonstrated. Relevant cross-sectional imaging criteria could be defined for the different histopathological variants of actinic keratoses. The surrounding skin displayed features of photodamage. Using features already suggested by reflectance confocal microscopy, the study implies that high-definition optical coherence tomography facilitates in vivo diagnosis of actinic keratosis and allows the grading of different actinic keratosis lesions for increased clinical utility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.