Abstract
We here develop a method to measure and image the full optical scattering properties by inverse spectroscopic optical coherence tomography (ISOCT). Tissue is modelled as a medium with continuous refractive index (RI) fluctuation and such a fluctuation is described by the RI correlation functions. Under the first-order Born approximation, the forward model is established for ISOCT. By measuring optical quantities of tissue including the scattering power of the OCT spectrum, the reflection albedo α defined as the ratio of scattering coefficient μ(s), and the backscattering coefficient μ(b), we are able to inversely deduce the RI correlation function and image the full set of optical scattering properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.