Abstract

A massively parallel magnetic tweezer system has been constructed that utilizes the self-repulsion of colloidal beads from a planar interface via a magnetic dipole image force. Self-repulsion enables the application of a uniform magnetic force to thousands of beads simultaneously, which permits the measurement of unbinding histograms at the lowest loading rates ever tested. The adhesion of 9.8 μm polystyrene beads to a fluorocarbon, PEG, and UV-irradiated PEG surfaces were measured between 10(-3)-10(0) pN/s force loading rates, revealing the presence of both kinetic and quasi-equilibrium unbinding regimes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.