Abstract

The square-lattice Ising antiferromagnet subjected to the imaginary magnetic field H=iθT∕2 with the “topological” angle θ and temperature T was investigated by means of the transfer-matrix method. Here, as a probe to detect the order–disorder phase transition, we adopt an extended version of the fidelity susceptibility χF(θ), which makes sense even for such a non-hermitian transfer matrix. As a preliminary survey, for an intermediate value of θ, we examined the finite-size-scaling behavior of χF(θ), and found a pronounced signature for the criticality; note that the magnetic susceptibility exhibits a weak (logarithmic) singularity at the Néel temperature. Thereby, we turn to the analysis of the power-law singularity of the phase boundary at θ=π. With θ−π scaled properly, the χF(θ) data are cast into the crossover scaling formula, indicating that the phase boundary is shaped concavely. Such a feature makes a marked contrast to that of the mean-field theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.