Abstract
The strength of the interlayer Josephson tunneling in layered superconductors is an essential test of the interlayer tunneling model as a mechanism for superconductivity, as well as a useful phenomenological parameter. A scanning superconducting quantum interference device (SQUID) microscope was used to image interlayer Josephson vortices in Tl2Ba2CuO6+delta and to obtain a direct measure of the interlayer tunneling in a high-transition temperature superconductor with a single copper oxide plane per unit cell. The measured interlayer penetration depth, lambdac, is approximately 20 micrometers, about 20 times the penetration depth required by the interlayer tunneling model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.