Abstract

AbstractLet $B^{H}$ be a fractional Brownian motion in $\mathbb{R}^{d}$ of Hurst index $H\in\left(0,1\right)$ , $f\;:\;\left[0,1\right]\longrightarrow\mathbb{R}^{d}$ a Borel function and $A\subset\left[0,1\right]$ a Borel set. We provide sufficient conditions for the image $(B^{H}+f)(A)$ to have a positive Lebesgue measure or to have a non-empty interior. This is done through the study of the properties of the density of the occupation measure of $(B^{H}+f)$ . Precisely, we prove that if the parabolic Hausdorff dimension of the graph of f is greater than Hd, then the density is a square integrable function. If, on the other hand, the Hausdorff dimension of A is greater than Hd, then it even admits a continuous version. This allows us to establish the result already cited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.