Abstract

In radiology, it is significantly important to produce adequate diagnostic information while minimally affecting the patient with the lowest amount of dose. A contrast-detail phantom is generally used to study the quality of image and the amount of radiation dose for digital X-ray imaging systems. To evaluate the quality of a phantom image, radiologists are traditionally required to manually indicate the location of the holes in each square in the phantom image. Then, the image quality figure (IQF) of the image can be evaluated. However, evaluation by the human eye is subjective as well as time-consuming, and it differs from person to person. In this paper, an image processing-based IQF evaluator is proposed to automatically measure the quality of a phantom image. Nine phantom images, each consisting of 2382 × 2212 pixels, were used as test images and were provided by Taichung Hospital, Department of Health, Executive Yuan, Taiwan, Republic of China. The IP-IQF evaluator separates the phantom image into squares and then stretches the contrast of each square to the range 0-255. After that, it splits each square into 3 × 3 equal-sized regions, and recognizes the pattern of the square based on the features computed by mean-difference gradient operation and run length enhancer. Furthermore, a genetic algorithm-based parameter values-detecting algorithm is presented to compute the optimal values of the parameters used in the IP-IQF evaluator. The experimental results demonstrate that CoCIQ and the IP-IQF evaluator can efficiently measure the IQF of a phantom image. The IP-IQF evaluator is more effective than a radiologist and CoCIQ in evaluating the IQF of a phantom image. The proposed IQF evaluator is more sensitive than not only the observation of radiologists but also the computer program CoCIQ. Moreover, a genetic algorithm is provided to compute the most suitable values of the parameters used in the IQF evaluator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.