Abstract

Abstract— Two‐station electro‐optical observations of the 1998 Leonid shower are presented. Precise heights and light curves were obtained for 79 Leonid meteors that ranged in brightness (at maximum luminosity) from +0.3 to +6.1 astronomical magnitude. The mean photometric mass of the data sample was 1.4 × 10−6 kg. The dependence of astronomical magnitude at peak luminosity on photometric mass and zenith angle was consistent with earlier studies of faint sporadic meteors. For example, a Leonid meteoroid with a photometric mass of ∼1.0 × 10‐7 kg corresponds to a peak meteor luminosity of about +4.5 astronomical magnitudes. The mean beginning height of the Leonid meteors in this sample was 112.6 km and the mean ending height was 95.3 km. The highest beginning height observed was 144.3 km. There is relatively little dependence of either the first or last heights on mass, which is indicative of meteoroids that have clustered into constituent grains prior to the onset of intensive grain ablation. The height distribution, combined with numerical modelling of the ablation of the meteoroids, suggests that silicate‐like materials are not the principal component of Leonid meteoroids and hints at the presence of a more volatile component. Light curves of many Leonid meteors were examined for evidence of the physical structure of the associated meteoroids: similar to the 1997 Leonid meteors, the narrow, nearly symmetric curves imply that the meteoroids are not solid objects. The light curves are consistent with a dustball structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.