Abstract

This paper presents the development of micro-mechanical discrete element model for hot mix asphalt (HMA) mixtures modified with carbon nanofibers using the advanced imaging techniques. Shape-structural model of two-phased HMA consisting of aggregate and matrix was generated using cluster of small discrete disk-shaped particles for each phase. Three contact models, shear and normal stiffness, static and sliding friction, and inter-particle contact bonds were employed to model the constitutive behavior of the HMA mixture. To validate the developed DEM model an experimental study was executed. It was observed that the uniaxial compressive test simulation reasonably predicted the stress–strain behavior of the HMA mixture. The dynamic modulus and strength obtained from indirect tensile test were similar to the predicted moduli and strength using the DEM under the quasi-elastic state for all the HMA mixtures studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.