Abstract
Nowadays, agriculture plays a major role in the progress of our nation’s economy. However, the advent of various crop-related infections has a negative impact on agriculture productivity. Crop leaf disease identification plays a critical role in addressing this issue and educating farmers on how to prevent the spread of diseases in crops. Researchers have already used methodologies such as decision trees, random forests, deep neural networks, and support vector machines. In this chapter, we proposed a hybrid method using a combination of convolutional neural networks and an autoencoder for detecting crop leaf diseases. With the help of convolutional encoder networks, this chapter presents a unique methodology for detecting crop leaf infections. Using PlantVillage dataset, the model is trained to recognize crop infections based on leaf images and achieves an accuracy of 99.82%. When compared with existing work, this chapter achieves better results with a suitable selection of hyper tuning parameters of convolution neural networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.