Abstract
<span lang="EN-US">Wayang orang performance is one of the Indonesian traditional cultures. The wayang orang players took about an hour to become a proper wayang orang since it takes time to have makeup and to find the appropriate costume before the performance is held. This problem can be solved by developing a computer-based simulation on applying makeup and traditional costume to the face and head of the wayang orang player, respectively. This task can be completed by using image translation. Therefore, people's images can be transformed into wayang orang images. This study aims to translate human faces into wayang orang by adding makeup and accessories using the U-GAT-IT with an unpaired dataset consisting of 1216 data trains and 240 data tests. The challenge of this research is to maintain the image background and the facial identity component in the input image. This research employs quantitative testing employ Kernel Inception Distance (KID), <em>Frèchet</em> Inception Distance (FID), and Inception Score (IS) to evaluate the quality of the output image obtained from the generator. The experimental results show that U-GAT-IT produces a better result than DCLGAN does according to the value of IS, FID, and KID. The IS, FID, and KID obtained by implementing U-GAT-IT are 2.414, 0.924, and 4.357, respectively.</span>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IAES International Journal of Artificial Intelligence (IJ-AI)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.