Abstract
Previous research has investigated inductive transfer for single output modeling problems such as classification or prediction of a scalar. Little research has been done in the area of inductive transfer applied to tasks with multiple outputs. We report the results of using Multiple Task Learning (MTL) neural networks and Context-sensitive Multiple Task Learning (csMTL) on a domain of image transformation tasks. Models are developed to transform synthetic images of neutral (passport) faces to that of corresponding images of angry, happy and sad faces. The results are inconclusive for MTL, however they demonstrate that inductive transfer with csMTL is beneficial. When the secondary tasks have sufficient numbers of training examples from which to provide transfer, csMTL models are able to transform images more accurately than standard single task learning models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.