Abstract
Existing visual question answering methods typically concentrate only on visual targets in images, ignoring the key textual content in the images, thereby limiting the depth and accuracy of image content comprehension. Inspired by this, we pay attention to the task of text-based visual question answering, address the performance bottleneck issue caused by over-fitting risk in existing self-attention-based models, and propose a scenario text visual question answering method called INT2-VQA that fuses knowledge manifestation based on inter-modality and intra-modality collaborations. Specifically, we model the complementary priori knowledge of locational collaboration between visual targets and textual targets across modalities and the contextual semantical collaboration among textual word targets within a modality. Based on this, a universal knowledge-reinforced attention module is designed to achieve a unified encoding manifestation of both relations. Extensive ablation experiments, contrast experiments, and visual analyses demonstrate the effectiveness of the proposed method and prove its superiority over the other state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.