Abstract
This tutorial focuses on challenges and solutions for content-based image annotation and retrieval in the context of online image sharing and tagging. We present a unified review on three closely linked problems, i.e., tag assignment, tag refinement, and tag-based image retrieval. We introduce a taxonomy to structure the growing literature, understand the ingredients of the main works, clarify their connections and difference, and recognize their merits and limitations. Moreover, we present an open-source testbed, with training sets of varying sizes and three test datasets, to evaluate methods of varied learning complexity. A selected set of eleven representative works have been implemented and evaluated. During the tutorial we provide a practice session for hands on experience with the methods, software and datasets. For repeatable experiments all data and code are online at http://www.micc.unifi.it/tagsurvey
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.