Abstract

Sparse representation has recently attracted enormous interests in the field of image restoration. The conventional sparsity-based methods enforce sparse coding on small image patches with certain constraints. However, they neglected the characteristics of image structures both within the same scale and across the different scales for the image sparse representation. This drawback limits the modeling capability of sparsity-based super-resolution methods, especially for the recovery of the observed low-resolution images. In this paper, we propose a joint super-resolution framework of structure-modulated sparse representations to improve the performance of sparsity-based image super-resolution. The proposed algorithm formulates the constrained optimization problem for high-resolution image recovery. The multistep magnification scheme with the ridge regression is first used to exploit the multiscale redundancy for the initial estimation of the high-resolution image. Then, the gradient histogram preservation is incorporated as a regularization term in sparse modeling of the image super-resolution problem. Finally, the numerical solution is provided to solve the super-resolution problem of model parameter estimation and sparse representation. Extensive experiments on image super-resolution are carried out to validate the generality, effectiveness, and robustness of the proposed algorithm. Experimental results demonstrate that our proposed algorithm, which can recover more fine structures and details from an input low-resolution image, outperforms the state-of-the-art methods both subjectively and objectively in most cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.