Abstract
We propose a novel image steganalysis method, based on singular value decomposition and noise estimation, for the spatial domain LSB embedding families. We first define a content independence parameter, DS, that is calculated for each LSB embedding rate. Next, we estimate the DS curve and use noise estimation to improve the curve approximation accuracy. It is shown that the proposed approach gives an estimate of the LSB embedding rate, as well as information about the existence of the embedded message (if any). The proposed method can effectively be applied to a wide range of the image LSB steganography families in spatial domain. To evaluate the proposed scheme, we applied the method to a large image database. Using a large image database, simulation results of our steganalysis scheme indicate significant improvement to both true detection and false alarm rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.