Abstract
Abstract We perform image stacking analysis of Sloan Digital Sky Survey (SDSS) photometric galaxies over the AKARI Far-Infrared Surveyor maps at 65 μm, 90 μm, and 140 μm. The resulting image profiles are decomposed into the central galaxy component (single term) and the nearby galaxy component (clustering term), as a function of the r-band magnitude, mr, of the central galaxy. We find that the mean far-infrared (FIR) flux of a galaxy with magnitude mr is well fitted with $f^s_{90\mu {\rm m}}=13\times 10^{0.306(18-m_{\,r})}$ [mJy]. The FIR amplitude of the clustering term is consistent with that expected from the angular-correlation function of the SDSS galaxies, but galaxy morphology dependence needs to be taken into account for a more quantitative conclusion. We also fit the spectral energy distribution of stacked galaxies at 65 μm, 90 μm, and 140 μm, and derive a mean dust temperature of ∼30 K. This is consistent with the typical dust temperature of galaxies that are FIR luminous and individually detected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.