Abstract

Image source identification is important to verify the origin and authenticity of digital images. However, when images are altered by some post-processing, the performance of the existing source verification methods may degrade. In this paper, we propose a convolutional neural network (CNN) to solve the above problem. Specifically, we present a theoretical framework for different tampering operations, to confirm whether a single operation has affected photo response non-uniformity (PRNU) contained in images. Then, we divide these operations into two categories: non-influential operation and influential operation. Besides, the images altered by the combination of non-influential and influential operations are equal to images that have only undergone a single influential operation. To make our introduced CNN robust to both non-influential operation and influential operation, we define a multi-kernel noise extractor that consists of a high-pass filter and three parallel convolution filters of different sizes. The features generated by the parallel convolution layers are then fed to subsequent convolutional layers for further feature extraction. The experimental results provide the effectiveness of our method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call