Abstract

Measures of image similarity that inspect the intensity probability distribution of the images have proved extremely popular in image registration applications. The joint entropy of the intensity distributions and the marginal entropies of the individual images are combined to produce properties such as resistance to loss of information in one image and invariance to changes in image overlap during registration. However information theoretic cost functions are largely used empirically. This work attempts to describe image similarity measures within a formal mathematical metric framework. Redefining mutual information as a metric is shown to lead naturally to the standardised variant, normalised mutual information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.