Abstract

With the wide use of sophisticated photo editing tools, digital image manipulation becomes very convenient, which makes the detection of image tampering significant. Image sharpening, which aims to enhance the contrast of edges in an image, is a ubiquitous image tampering operation. The detection of image sharpening can serve as a reliable clue for image forgery. In this paper, we propose a novel image sharpening detection method based on multiresolution overshoot artifact analysis (MOAA). By building the relationship between the overshoot artifact strength and the slope of a sharpened edge, we find that although undergoing the same sharpening operation, the edge with large slope will present a stronger overshoot artifact than the one with small slope. Based on this finding, we use the nonsubsampled contourlet transform (NSCT) to classify the image edge points into three categories, i.e., weak, middle and strong edge points and measure the overshoot artifact of each category respectively. A cascaded decision strategy is adopted to decide an image is sharpened or not. Experimental results on digital images with various sharpening operators demonstrate the superiority of our proposed method when compared with state-of-the-art approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.