Abstract
Monitoring heart rates using conventional electrocardiogram equipment requires patients to wear adhesive gel patches or chest straps that can cause skin irritation and discomfort. Commercially available pulse oximetry sensors that attach to the fingertips or earlobes also cause inconvenience for patients and the spring-loaded clips can be painful to use. Therefore, a novel robust face-based heart rate monitoring technique is proposed to allow for the evaluation of heart rate variation without physical contact with the patient. Face reflectance is first decomposed from a single image and then heart rate evaluation is conducted from consecutive frames according to the periodic variation of reflectance strength resulting from changes to hemoglobin absorptivity across the visible light spectrum as heartbeats cause changes to blood volume in the blood vessels in the face. To achieve a robust evaluation, ensemble empirical mode decomposition of the Hilbert-Huang transform is used to acquire the primary heart rate signal while reducing the effect of ambient light changes. Our proposed approach is found to outperform the current state of the art, providing greater measurement accuracy with smaller variance and is shown to be feasible in real-world environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.