Abstract
Semantic feature recognition in colour images is required for identifying uneven patterns in object detection and classification. The semantic features are identified by segmenting the colorimetric sensor array features through machine learning paradigms. Semantic segmentation is a method for identifying distinct elements in an image. This can be considered a task involving image classification at the pixel level. This article introduces a semantic feature-dependent array segmentation method (SFASM) to improve recognition accuracy due to irregular semantics. The proposed method incorporates a deep convolutional neural network for detecting the semantic and un-semantic features based on sensor array representations. The colour distributions per array are identified for horizontal and vertical semantics analysis. In this analysis, deep learning classifies the uneven patterns based on colour distribution, i.e. the consecutive and scattered colour distribution pixels in an array are correlated for their similarity. This similarity identification is maximized through max-pooling and recurrent iterations, preventing detection errors. The proposed method classifies the semantic features for further correlation sections, improving the accuracy. The proposed method's performance is thus validated using the metrics precision, analysis time and F1-Score.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.