Abstract
Image segmentation is a computer vision technique that involves dividing an image into distinct and meaningful regions or segments. The objective was to partition the image into areas that share similar visual characteristics. Noise and undesirable artifacts introduce inconsistencies and irregularities in image data. These inconsistencies severely affect the ability of most segmentation algorithms to distinguish between true image features, leading to less reliable and lower-quality results. Cellular Automata (CA) is a computational concept that consists of a grid of cells, each of which can be in a finite number of states. These cells evolve over discrete time steps based on a set of predefined rules that dictate how a cell's state changes according to its own state and the states of its neighboring cells. In this paper, a new segmentation approach based on the CA model was introduced. The proposed approach consisted of three phases. In the initial two phases of the process, the primary objective was to eliminate noise and undesirable artifacts that can interfere with the identification of regions exhibiting similar visual characteristics. To achieve this, a set of rules is designed to modify the state value of each cell or pixel based on the states of its neighboring elements. In the third phase, each element is assigned a state that is chosen from a set of predefined states. These states directly represent the final segmentation values for the corresponding elements. The proposed method was evaluated using different images, considering important quality indices. The experimental results indicated that the proposed approach produces better-segmented images in terms of quality and robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.