Abstract

The human eyes observe an image through perceptual units surrounded by symmetrical or asymmetrical object contours at a proper scale, which enables them to quickly extract the foreground of the image. Inspired by this characteristic, a model combined with multiscale perceptual grouping and unit-based segmentation is proposed in this paper. In the multiscale perceptual grouping part, a novel total variation regularization is proposed to smooth the image into different scales, which removes the inhomogeneity and preserves the edges. To simulate perceptual units surrounded by contours, the watershed method is utilized to cluster pixels into groups. The scale of smoothness is determined by the number of perceptual units. In the segmentation part, perceptual units are regarded as the basic element instead of discrete pixels in the graph cut. The appearance models of the foreground and background are constructed by combining the perceptual units. According to the relationship between perceptual units and the appearance model, the foreground can be segmented through a minimum-cut/maximum-flow algorithm. The experiment conducted on the CMU-Cornell iCoseg database shows that the proposed model has a promising performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call