Abstract
Image segmentation is a basic image processing technique that is primarily used for finding segments that form the entire image. These segments can be then utilized in discriminative feature extraction, image retrieval, and pattern recognition. Clustering and region growing techniques are the commonly used image segmentation methods. K-Means is a heavily used clustering technique due to its simplicity and low computational cost. However, K-Means results depend on the initial centres’ values which are selected randomly, which leads to inconsistency in the image segmentation results. In addition, the quality of the isolated regions depends on the homogeneity of the resulted segments. In this paper, an improved K-Means clustering algorithm is proposed for image segmentation. The presented method uses Particle Swarm Intelligence (PSO) for determining the initial centres based on Li’s method. These initial centroids are then fed to the K-Means algorithm to assign each pixel into the appropriate cluster. The segmented image is then given to a region growing algorithm for regions isolation and edge map generation. The experimental results show that the proposed method gives high quality segments in a short processing time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Iraqi Journal of Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.