Abstract

Image segmentation is the method of partitioning an image into some homogenous regions that are more meaningful for its better understanding and examination. Soft computing methods having the capabilities of achieving artificial intelligence are predominately used to perform the task of segmentation. Due to the variability and the uncertainty present in natural scenes, segmentation is a complicated task to perform with the help of conventional image segmentation techniques. Therefore, in this article a hybrid Fuzzy Competitive Learning based Counter Propagation Network (FCPN) is proposed for the segmentation of natural scene images. This method compromises of the uncertainty handling capabilities of the fuzzy system and proficiency of parallel learning ability of neural network. To identify the number of clusters automatically in less computational time, the instar layer of Counter propagation network (CPN) has been trained by using Fuzzy competitive learning (FCL). The outstar layer of counter propagation network is trained by using Grossberg learning for obtaining the desired output. Region growing method having the tendency to correctly identify edges with simplicity is used for initial seed point selection. Then, the most similar regions in the image are clustered and the number of clusters is estimated automatically. Finally, by identifying the cluster centers the images are segmented. Bacterial foraging algorithm is used to initialize the initial weights to the network, which helps the proposed method in achieving low convergence ratio with higher accuracy. Results validated the higher performance of proposed FCPN method when compared with other states-of-the-art methods. For future work, some other adaptive methods like the fuzzy model-based network can be used to identify multiple object regions and classifying them among separate clusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.