Abstract
Image segmentation methodology is a part of nearly all computer schemes as a pre-processing phase to excerpt more meaningful and useful information for analysing the objects within an image. Segmentation of an image is one of the most conjoint scientific matter, essential technology and critical constraint for image investigation and dispensation. There has been a lot of research work conceded in several emerging algorithms and approaches for segmentation, but even at present, no solitary standard technique has been proposed. The methodologies present are broadly classified among two classes i.e. traditional approaches and Soft computing approaches or Computational Intelligence (CI) approaches. In this article, our emphasis is to focus on Soft Computing (SC) techniques which has been adopted for segmenting an image. Nowadays, it is quite often seen that SC or CI is cast-off frequently in Information Technology and Computer Technology. However, Soft Computing approaches working synergistically provides in anyway, malleable information processing competence to manipulate real-life enigmatic circumstances. The impetus of these methodologies is to feat the lenience for ambiguity, roughness, imprecise acumen and partial veracity for the sake to attain compliance, sturdiness and economical results. Neural Networks (NNs), Fuzzy Logic (FL), and Genetic Algorithm (GA) are the fundamental approaches of SC regulation. SC approaches has been broadly implemented and studied in the number of applications including scientific analysis, medical, engineering, management, humanities etc. The paper focuses on introducing the various SC methodologies and presenting numerous applications in image segmentation. The acumen is to corroborate the probabilities of smearing computational intelligence to segmentation of an image. The available articles about usage of SC in segmentation are investigated, especially focusing on the core approaches like FL, NN and GA and efforts has been also made for collaborating new techniques like Fuzzy C-Means from FL family and Deep Neural Network or Convolutional Neural Network from NN family. The impression behind this work is to simulate core Soft Computing methodologies, along with encapsulating various terminologies like evaluation parameters, tools, databases, noises etc. which can be advantageous for researchers. This study also identifies approaches of SC being used, often collectively to resolve the distinctive dilemma of image segmentation, concluding with a general discussion about methodologies, applications followed by proposed work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.