Abstract

We present the image segmentation model using the modified Allen–Cahn equation with a fractional Laplacian. The motion of the interface for the classical Allen–Cahn equation is known as the mean curvature flows, whereas its dynamics is changed to the macroscopic limit of Lévy process by replacing the Laplacian operator with the fractional one. To numerical implementation, we prove the unconditionally unique solvability and energy stability of the numerical scheme for the proposed model. The effect of a fractional Laplacian operator in our own and in the Allen–Cahn equation is checked by numerical simulations. Finally, we give some image segmentation results with different fractional order, including the standard Laplacian operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.