Abstract

Focal molography is a label-free optical biosensing method that relies on a coherent pattern of binding sites for biomolecular interaction analysis. Reactive immersion lithography (RIL) is central to the patterning of molographic chips but has potential for improvements. Here, we show that applying the idea of image reversal to RIL enables the fabrication of coherent binding patterns of increased quality (i.e., higher analyte efficiency). Thereby the detection limit of focal molography in biological assays can be improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.