Abstract
Deep Convolution neural networks (CNN) has achieved great success in the field of image recognition. But in the image retrieval task, the global CNN features ignore local detail description for paying too much attention to semantic information of images. So the MAP of image retrieval remains to be improved. Aiming at this problem, this paper proposes a local CNN feature extraction algorithm based on image understanding, which includes three steps: significant regions extraction, significant regions description and pool coding. This method overcomes the semantic gap problem in traditional local characteristic and improves the retrieval effect of global CNN features. Then, we apply this local CNN feature in the image retrieval task, including the same category retrieval task by feature fusion strategy and the instance retrieval task by re-ranking strategy. The experimental results show that this method has achieved good performance on the Caltech 101 and Caltech 256 classification datasets, and competitive results on the Oxford 5k and Paris 6k instance retrieval datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.